MATHS750
 Some 3-manifolds from sewing

1. \mathbb{S}^{3} from two balls.

Let \mathbb{B}_{1}^{3} and B_{2}^{3} be two disjoint copies of the 3-ball $\left\{x \in \mathbb{R}^{3} /|x| \leq 1\right\}$. Let $h: \partial B_{1}^{3} \rightarrow \partial \mathbb{B}_{2}^{3}$ be any homeomorphism. Define \sim on $\mathbb{B}_{1}^{3} \cup \mathbb{B}_{2}^{3}$ to be generated by $x \sim h(x)$ for each $x \in \mathbb{B}_{1}^{3}$. Topologise $\mathbb{B}_{1}^{3} \cup \mathbb{B}_{2}^{3}$ as a topological sum. Then $\mathbb{B}_{1}^{3} \cup \mathbb{B}_{2}^{3} / \sim$ is homeomorphic to \mathbb{S}^{3}. A standard notation is to write $\mathbb{B}_{1}^{3} \cup_{h} \mathbb{B}_{2}^{3}$ for $\mathbb{B}_{1}^{3} \cup \mathbb{B}_{2}^{3} / \sim$
The same idea works for spheres of other dimensions.
2. \mathbb{S}^{3} from two solid tori.

We can embed $\mathbb{S}^{1} \times \mathbb{S}^{1}$ in \mathbb{R}^{3} as

$$
\left\{(x, y, z) /\left(\sqrt{x^{2}+y^{2}}-2\right)^{2}+z^{2}=1\right\}
$$

Let V be a "solid torus," ie the region of \mathbb{R}^{3} bounded by the embedded torus described above. On the surface of V we may choose two vital curves called the latitude or meridian and the longitude. Denote these curves by m and l respectively.
Now let V_{1} and V_{2} be two disjoint copies of V. Suppose that $h: \partial V_{1} \rightarrow \partial V_{2}$ is a homeomorphism. Concentrate on the images $h(m)$ and $h(l)$, and especially $h(m)$. The curve $h(m)$ will travel around the torus a few times along the longitude and a few times along the meridian, say p and q respectively. Then p and q are coprime integers. Just as in 1 define \sim on $V_{1} \cup V_{2}$ to be generated by $x \sim h(x)$. Set $L(p, q)=V_{1} \cup_{h} V_{2}$. The space $L(p, q)$ is called the lens space of type (p, q).

$$
L(1, q) \approx \mathbb{S}^{3} ; L(0,1) \approx \mathbb{S}^{2} \times \mathbb{S}^{1} ; L(2,1) \approx \mathbb{R} \mathbb{P}^{3}
$$

Some facts

- $L(p, q) \approx L(p,-q) \approx L(-p, q) \approx L(-p,-q) \approx L(p, q+k p)$ for any integer k.
- $L(p, q) \approx L\left(p, q^{\prime}\right)$ if $\pm q q^{\prime} \equiv 1(\bmod p)$.

3. Let H be a handlebody of genus g : H itself is best thought of as a quotient space. Let H_{1} and H_{2} be two disjoint copies of H and let $h: \partial H_{1} \rightarrow \partial H_{2}$ be a homeomorphism. Form the quotient space $H_{1} \cup_{h} H_{2}$.
The triple $\left(H_{1}, H_{2}, h\right)$ is called the Heegaard diagram or Heegaard splitting of genus g of $H_{1} \cup_{h} H_{2}$.
An important theorem of 3 -manifold theory says that every closed orientable 3 -manifold has a Heegaard diagram.
4. Denote by $\mathbb{O}(3)$ the group of orthogonal transformations of the vector space \mathbb{R}^{3}, ie those of determinant ± 1. Denote by $\mathbb{S O}(3)$ the special orthogonal transformations, ie those of determinant 1. Both these spaces have natural topologies. Then $\mathbb{S O}(3)$ is $\mathbb{S}^{3} /$ (antipodal identification). This space is called real projective 3 -space, $\mathbb{R} \mathbb{P}^{3}$.
5. Let $\Gamma \subset \mathbb{S O}(3)$ be the group of oriented symmetries of the regular dodecahedron: Γ is a group of order 60 . Let $\mathbb{S O}(3) / \Gamma$ denote the usual group quotient; this inherits the quotient topology. This space is also a 3-manifold, Poincaré's homology sphere. It may also be thought of as the space of all regular dodecahedra in \mathbb{S}^{2}.
