MATHS750 Some 3-manifolds from sewing

1. \mathbb{S}^3 from two balls.

Let \mathbb{B}_1^3 and B_2^3 be two disjoint copies of the 3-ball $\{x \in \mathbb{R}^3 \mid |x| \leq 1\}$. Let $h : \partial B_1^3 \to \partial \mathbb{B}_2^3$ be any homeomorphism. Define \sim on $\mathbb{B}_1^3 \cup \mathbb{B}_2^3$ to be generated by $x \sim h(x)$ for each $x \in \mathbb{B}_1^3$. Topologise $\mathbb{B}_1^3 \cup \mathbb{B}_2^3$ as a topological sum. Then $\mathbb{B}_1^3 \cup \mathbb{B}_2^3 / \sim$ is homeomorphic to \mathbb{S}^3 . A standard notation is to write $\mathbb{B}_1^3 \cup_h \mathbb{B}_2^3$ for $\mathbb{B}_1^3 \cup \mathbb{B}_2^3 / \sim$

The same idea works for spheres of other dimensions.

2. \mathbb{S}^3 from two solid tori.

We can embed $\mathbb{S}^1 \times \mathbb{S}^1$ in \mathbb{R}^3 as

$$\left\{ (x,y,z) \ / \ \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}.$$

Let V be a "solid torus," is the region of \mathbb{R}^3 bounded by the embedded torus described above. On the surface of V we may choose two vital curves called the *latitude* or *meridian* and the *longitude*. Denote these curves by m and l respectively.

Now let V_1 and V_2 be two disjoint copies of V. Suppose that $h : \partial V_1 \to \partial V_2$ is a homeomorphism. Concentrate on the images h(m) and h(l), and especially h(m). The curve h(m) will travel around the torus a few times along the longitude and a few times along the meridian, say p and q respectively. Then p and q are coprime integers. Just as in 1 define \sim on $V_1 \cup V_2$ to be generated by $x \sim h(x)$. Set $L(p,q) = V_1 \cup_h V_2$. The space L(p,q) is called the *lens space of type* (p,q).

$$L(1,q) \approx \mathbb{S}^3; L(0,1) \approx \mathbb{S}^2 \times \mathbb{S}^1; L(2,1) \approx \mathbb{RP}^3.$$

Some facts

- $L(p,q) \approx L(p,-q) \approx L(-p,q) \approx L(-p,-q) \approx L(p,q+kp)$ for any integer k.
- $L(p,q) \approx L(p,q')$ if $\pm qq' \equiv 1 \pmod{p}$.
- 3. Let H be a handlebody of genus g: H itself is best thought of as a quotient space. Let H_1 and H_2 be two disjoint copies of H and let $h: \partial H_1 \to \partial H_2$ be a homeomorphism. Form the quotient space $H_1 \cup_h H_2$.

The triple (H_1, H_2, h) is called the *Heegaard diagram* or *Heegaard splitting* of genus g of $H_1 \cup_h H_2$. An important theorem of 3-manifold theory says that every closed orientable 3-manifold has a Heegaard diagram.

- 4. Denote by O(3) the group of orthogonal transformations of the vector space R³, ie those of determinant ±1. Denote by SO(3) the special orthogonal transformations, ie those of determinant 1. Both these spaces have natural topologies. Then SO(3) is S³/(antipodal identification). This space is called *real projective 3-space*, RP³.
- 5. Let $\Gamma \subset SO(3)$ be the group of oriented symmetries of the regular dodecahedron: Γ is a group of order 60. Let $SO(3)/\Gamma$ denote the usual group quotient; this inherits the quotient topology. This space is also a 3-manifold, *Poincaré's homology sphere*. It may also be thought of as the space of all regular dodecahedra in S^2 .